Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Despite tremendous advances in sample preparation and classification algorithms for electron cryomicroscopy (cryo-EM) and single-particle analysis (SPA), sample heterogeneity remains a major challenge and can prevent access to high-resolution structures. In addition, optimization of preparation conditions for a given sample can be time-consuming. In the current work, it is demonstrated that native electrospray ion-beam deposition (native ES-IBD) is an alternative, reliable approach for the preparation of extremely high-purity samples, based on mass selection in vacuum. Folded protein ions are generated by native electrospray ionization, separated from other proteins, contaminants, aggregates, and fragments, gently deposited on cryo-EM grids, frozen in liquid nitrogen, and subsequently imaged by cryo-EM. We demonstrate homogeneous coverage of ice-free cryo-EM grids with mass-selected protein complexes. SPA reveals that the complexes remain folded and assembled, but variations in secondary and tertiary structures are currently limiting information in 2D classes and 3D EM density maps. We identify and discuss challenges that need to be addressed to obtain a resolution comparable to that of the established cryo-EM workflow. Our results show the potential of native ES-IBD to increase the scope and throughput of cryo-EM for protein structure determination and provide an essential link between gas-phase and solution-phase protein structures.

Original publication




Journal article


PNAS Nexus


Oxford University Press (OUP)

Publication Date