Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Vacuolar-type adenosine triphosphatases (V-ATPases) not only function as rotary proton pumps in cellular organelles but also serve as signaling hubs. To identify the endogenous binding partners of V-ATPase, we collected a large dataset of human V-ATPases and did extensive classification and focused refinement of human V-ATPases. Unexpectedly, about 17% of particles in state 2 of human V-ATPases display additional density with an overall resolution of 3.3 Å. Structural analysis combined with artificial intelligence modeling enables us to identify this additional density as mEAK-7, a protein involved in mechanistic target of rapamycin (mTOR) signaling in mammals. Our structure shows that mEAK-7 interacts with subunits A, B, D, and E of V-ATPases in state 2. Thus, we propose that mEAK-7 may regulate V-ATPase function through binding to V-ATPases in state 2 as well as mediate mTOR signaling.

Original publication




Journal article


Proc Natl Acad Sci U S A

Publication Date





V-ATPase, lysosomal signaling, mEAK-7, mTOR