Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Calcium-induced calcium release (CICR) may function widely in calcium-mediated cell signaling, but has been most thoroughly characterized in muscle cells. In a homogenate of sea urchin eggs, which display transients in the intracellular free calcium concentration ([Ca2+]i) during fertilization and anaphase, addition of Ca2+ triggered CICR. Ca2+ release was also induced by the CICR modulators ryanodine and caffeine. Responses to both Ca2+ and CICR modulators (but not Ca2+ release mediated by inositol 1,4,5-trisphosphate) were inhibited by procaine and ruthenium red, inhibitors of CICR. Intact eggs also displayed transients of [Ca2+]i when microinjected with ryanodine. Cyclic ADP-ribose, a metabolite with potent Ca(2+)-releasing properties, appears to act by way of the CICR mechanism and may thus be an endogenous modulator of CICR. A CICR mechanism is present in these nonmuscle cells as is assumed in various models of intracellular Ca2+ wave propagation.

Original publication

DOI

10.1126/science.1909457

Type

Journal article

Journal

Science (New York, N.Y.)

Publication Date

09/1991

Volume

253

Pages

1143 - 1146

Addresses

Department of Biology, Johns Hopkins University, Baltimore, MD 21218.

Keywords

Ovum, Animals, Sea Urchins, Calcium, Egtazic Acid, Adenosine Diphosphate Ribose, Cyclic ADP-Ribose, Adenosine Triphosphate, Spectrometry, Fluorescence, Kinetics, Time Factors