Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Cardiac magnetic resonance native T1-mapping provides noninvasive, quantitative, and contrast-free myocardial characterization. However, its predictive value in population cohorts has not been studied. OBJECTIVES: The associations of native T1 with incident events were evaluated in 42,308 UK Biobank participants over 3.17 ± 1.53 years of prospective follow-up. METHODS: Native T1-mapping was performed in 1 midventricular short-axis slice using the Shortened Modified Look-Locker Inversion recovery technique (WIP780B) in 1.5-T scanners (Siemens Healthcare). Global myocardial T1 was calculated using an automated tool. Associations of T1 with: 1) prevalent risk factors (eg, diabetes, hypertension, and high cholesterol); 2) prevalent and incident diseases (eg, any cardiovascular disease [CVD], any brain disease, valvular heart disease, heart failure, nonischemic cardiomyopathies, cardiac arrhythmias, atrial fibrillation [AF], myocardial infarction, ischemic heart disease [IHD], and stroke); and 3) mortality (eg, all-cause, CVD, and IHD) were examined. Results are reported as odds ratios (ORs) or HRs per SD increment of T1 value with 95% CIs and corrected P values, from logistic and Cox proportional hazards regression models. RESULTS: Higher myocardial T1 was associated with greater odds of a range of prevalent conditions (eg, any CVD, brain disease, heart failure, nonischemic cardiomyopathies, AF, stroke, and diabetes). The strongest relationships were with heart failure (OR: 1.41 [95% CI: 1.26-1.57]; P = 1.60 × 10-9) and nonischemic cardiomyopathies (OR: 1.40 [95% CI: 1.16-1.66]; P = 2.42 × 10-4). Native T1 was positively associated with incident AF (HR: 1.25 [95% CI: 1.10-1.43]; P = 9.19 × 10-4), incident heart failure (HR: 1.47 [95% CI: 1.31-1.65]; P = 4.79 × 10-11), all-cause mortality (HR: 1.24 [95% CI: 1.12-1.36]; P = 1.51 × 10-5), CVD mortality (HR: 1.40 [95% CI: 1.14-1.73]; P = 0.0014), and IHD mortality (HR: 1.36 [95% CI: 1.03-1.80]; P = 0.0310). CONCLUSIONS: This large population study demonstrates the utility of myocardial native T1-mapping for disease discrimination and outcome prediction.

Original publication

DOI

10.1016/j.jcmg.2022.06.011

Type

Journal article

Journal

JACC Cardiovasc Imaging

Publication Date

04/2023

Volume

16

Pages

450 - 460

Keywords

cardiac magnetic resonance, cardiovascular disease, incident events, mortality, native T1 mapping, Humans, Prospective Studies, Biological Specimen Banks, Predictive Value of Tests, Cardiomyopathies, Heart Failure, Atrial Fibrillation, Stroke, United Kingdom