Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Evidence on body fat distribution shows opposing effects of waist circumference (WC) and hip circumference (HC) for coronary heart disease (CHD). We aimed to investigate the causality and the shape of such associations. METHODS: UK Biobank is a prospective cohort study of 0.5 million adults aged 40-69 years recruited between 2006 and 2010. Adjusted hazard ratios (HRs) for the associations of measured and genetically predicted body mass index (BMI), WC, HC and waist-to-hip ratio with incident CHD were obtained from Cox models. Mendelian randomization (MR) was used to assess causality. The analysis included 456 495 participants (26 225 first-ever CHD events) without prior CHD. RESULTS: All measures of adiposity demonstrated strong, positive and approximately log-linear associations with CHD risk over a median follow-up of 12.7 years. For HC, however, the association became inverse given the BMI and WC (HR per usual SD 0.95, 95% CI 0.93-0.97). Associations for BMI and WC remained independently positive after adjustment for other adiposity measures and were similar (1.14, 1.13-1.16 and 1.18, 1.15-1.20, respectively), with WC displaying stronger associations among women. Blood pressure, plasma lipids and dysglycaemia accounted for much of the observed excess risk. MR results were generally consistent with the observational, implying causality. CONCLUSIONS: Body fat distribution measures displayed similar associations with CHD risk as BMI except for HC, which was inversely associated with CHD risk (given WC and BMI). These findings suggest that different measures of body fat distribution likely influence CHD risk through both overlapping and independent mechanisms.

Original publication




Journal article


Int J Epidemiol

Publication Date



Obesity, coronary heart disease, epidemiology, genetics