Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The field of biofabrication is rapidly expanding with the advent of new technologies and material systems to engineer complex tissues. In this opinion article, we introduce an emerging tissue patterning method, physical-property-based patterning, that has strong translational potential given its simplicity and limited dependence on external hardware. Physical-property-based patterning relies solely on the intrinsic density, magnetic susceptibility, or compressibility of an object, its surrounding solution, and the noncontact application of a remote field. We discuss how physical properties can be exploited to pattern objects and design a variety of biologic tissues. Finally, we pose several open questions that, if addressed, could transform the status quo of biofabrication, pushing us one step closer to patterning tissues in situ.

Original publication




Journal article


Trends Biotechnol

Publication Date



compressibility, density, magnetic susceptibility, physical-property-based patterning, remote fields, tissue engineering