Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Virtual evaluation of medical therapy through human-based modelling and simulation can accelerate and augment clinical investigations. Treatment of the most common cardiac arrhythmia, atrial fibrillation (AF), requires novel approaches. This study prospectively evaluates and mechanistically explains three novel pharmacological therapies for AF through in silico trials, including single and combined SK and K<sub>2</sub>P channel block. AF and pharmacological action were assessed in a large cohort of 1000 virtual patients, through 2962 multiscale simulations. Extensive calibration and validation with experimental and clinical data support their credibility. Sustained AF was observed in 654 virtual patients. In this cohort, cardioversion efficacy increased to 82% (535 of 654) through combined SK+K<sub>2</sub>P channel block, from 33% (213 of 654) and 43% (278 of 654) for single SK and K<sub>2</sub>P blocks, respectively. Drug-induced prolongation of tissue refractoriness, dependent on the virtual patient's ionic current profile, explained cardioversion efficacy (atrial refractory period increase: 133.0 ± 48.4 ms for combined vs. 45.2 ± 43.0 and 71.0 ± 55.3 ms for single SK and K<sub>2</sub>P block, respectively). Virtual patients cardioverted by SK channel block presented lower K<sub>2</sub>P densities, while lower SK densities favoured the success of K<sub>2</sub>P channel inhibition. Both ionic currents had a crucial role on atrial repolarization, and thus a synergism resulted from the multichannel block. All three strategies, including the multichannel block, preserved atrial electrophysiological function (i.e. conduction velocity and calcium transient dynamics) and thus its contractile properties (safety). In silico trials identify key factors determining treatment success and the combined SK+K<sub>2</sub>P channel block as a promising strategy for AF management. KEY POINTS: This is a large-scale in silico trial study involving 2962 multiscale simulations. A population of 1000 virtual patients underwent three treatments for atrial fibrillation. Single and combined SK+K<sub>2</sub>P channel block were assessed prospectively. The multi-ion channel inhibition resulted in 82% cardioversion efficacy. In silico trials have broad implications for precision medicine.

Original publication

DOI

10.1113/jp287124

Type

Journal article

Journal

The Journal of physiology

Publisher

Wiley

Publication Date

18/11/2024

Keywords

atrial fibrillation, in silico trials, K2P channels, pharmacological therapy, SK channels, virtual patients