Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Vessel segmentation is a fundamental, yet not well-solved problem in medical image analysis, due to the complicated geometrical and topological structures of human vessels. Unlike existing rule- and conventional learning-based techniques, which hardly capture the location of tiny vessel structures and perceive their global spatial structures, we propose Simultaneous Self- and Channel-attention Neural Network (termed SSCA-Net) to solve the multiscale structure-preserving vessel segmentation (MSVS) problem. SSCA-Net differs from the conventional neural networks in modeling image global contexts, showing more power to understand the global semantic information by both self- and channel-attention (SCA) mechanism and offering high performance on segmenting vessels with multiscale structures (e.g., DSC: 96.21% and MIoU: 92.70% on the intracranial vessel dataset). Specifically, the SCA module is designed and embedded in the feature decoding stage to learn SCA features at different layers, in which the self-attention is used to obtain the position information of the feature itself, and the channel attention is designed to guide the shallow features to obtain global feature information. To evaluate the effectiveness of our SSCA-Net, we compare it with several state-of-the-art methods on three well-known vessel segmentation benchmark datasets. Qualitative and quantitative results demonstrate clear improvements of our method over the state-of-the-art in terms of preserving vessel details and global spatial structures.

Original publication

DOI

10.1155/2021/6622253

Type

Journal article

Journal

Biomed Res Int

Publication Date

2021

Volume

2021

Keywords

Algorithms, Arteries, Blood Vessels, Databases as Topic, Deep Learning, Humans, Image Processing, Computer-Assisted, Leg, Neural Networks, Computer