Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Induced pluripotent stem (iPS) cells are being used increasingly to complement their embryonic counterparts to understand and develop the therapeutic potential of pluripotent cells. Our objectives were to identify an efficient cardiac differentiation protocol for human iPS cells as monolayers, and demonstrate that the resulting cardiac progenitors could provide a therapeutic benefit in a rodent model of myocardial infarction. Herein, we describe a 14-day protocol for efficient cardiac differentiation of human iPS cells as a monolayer, which routinely yielded a mixed population in which over 50% were cardiomyocytes, endothelium, or smooth muscle cells. When differentiating, cardiac progenitors from day 6 of this protocol were injected into the peri-infarct region of the rat heart; after coronary artery ligation and reperfusion, we were able to show that human iPS cell-derived cardiac progenitor cells engrafted, differentiated into cardiomyocytes and smooth muscle, and persisted for at least 10 weeks postinfarct. Hearts injected with iPS-derived cells showed a nonsignificant trend toward protection from decline in function after myocardial infarction, as assessed by magnetic resonance imaging at 10 weeks, such that the ejection fraction at 10 weeks in iPS treated hearts was 62%±4%, compared to that of control infarcted hearts at 45%±9% (P<0.2). In conclusion, we demonstrated efficient cardiac differentiation of human iPS cells that gave rise to progenitors that were retained within the infarcted rat heart, and reduced remodeling of the heart after ischemic damage.

Original publication




Journal article


Stem Cells Dev

Publication Date





977 - 986


Animals, Cell Differentiation, Humans, Induced Pluripotent Stem Cells, Magnetic Resonance Imaging, Myocardial Infarction, Myocardium, Rats, Regeneration, Regenerative Medicine, Stem Cell Transplantation, Transplantation, Heterologous, Treatment Outcome