Changes in sodium channel expression following trigeminal nerve injury.
Davies SL., Loescher AR., Clayton NM., Bountra C., Robinson PP., Boissonade FM.
We have investigated the expression of TTX-sensitive (TTXs) and TTX-resistant (TTXr) sodium channel subtypes following injury to the inferior alveolar nerve (IAN), in order to determine their potential role in the development of trigeminal neuropathic pain. In seven anaesthetised ferrets, fluorogold (2%) was injected into the left IAN to identify cell bodies with axons in this nerve. In four animals, the nerve was sectioned distal to the injection site and the remaining three served as controls. After 3 days, the animals were perfused with 4% paraformaldehyde. The left and right IANs and trigeminal ganglia were processed using indirect immunofluorescence with specific primary antibodies to TTXs subtypes Na(v)1.3 and Na(v)1.7 and TTXr subtypes Na(v)1.8 and Na(v)1.9. Image analysis was used to quantify the percentage area of staining (PAS) in the nerves. In the ganglia, counts were made of positively labelled cells in the fluorogold population. PAS for Na(v)1.8 and Na(v)1.9 was significantly greater in injured nerves than in either contralateral or control nerves. After injury, significantly fewer cells in the ganglia expressed Na(v)1.3 (controls 36.9%; injured 13.1%), Na(v)1.7 (controls 17.0%; injured 8.1%) and Na(v)1.9 (controls 60.3%; injured 29.0%) (p<0.05, unpaired t test). These changes are different from those previously reported in the dorsal root ganglion following damage to peripheral nerves of spinal origin. As they occur at a time of known high abnormal neural discharge, it seems likely that changes in sodium channel expression may play a role in nerve injury-induced trigeminal pain.