Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

One difficulty in using ion mobility (IM) mass spectrometry (MS) to improve the specificity of peptide ion assignments is that IM separations are performed using a range of pressures, gas compositions, temperatures, and modes of separation, which makes it challenging to rapidly extract accurate shape parameters. We report collision cross section values (Ω) in both He and N(2) gases for 113 peptide ions determined directly from drift times measured in a low-pressure, ambient temperature drift cell with radio-frequency (rf) ion confinement. These peptide ions have masses ranging from 231 to 2969 Da, Ω(He) of 89-616 Å(2), and Ω(N(2)) of 151-801 Å(2); thus, they are ideal for calibrating results from proteomics experiments. These results were used to quantify the errors associated with traveling-wave Ω measurements of peptide ions and the errors concomitant with using drift times measured in N(2) gas to estimate Ω(He). More broadly, these results enable the rapid and accurate determination of calibrated Ω for peptide ions, which could be used as an additional parameter to increase the specificity of assignments in proteomics experiments.

Original publication




Journal article


Anal Chem

Publication Date





7124 - 7130


Amino Acid Sequence, Animals, Calibration, Cattle, Helium, Mass Spectrometry, Molecular Sequence Data, Nitrogen, Peptides, Pressure, Proteomics, Temperature