Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The increasing availability of rodent models of human cardiovascular disease has led to a need to translate noninvasive imaging techniques such as magnetic resonance imaging (MRI) from the clinic to the animal laboratory. The aim of this study was to develop phantoms simulating the short-axis view of left ventricular motion of rats and mice, thus reducing the need for live animals in the development of MRI. Cylindrical phantoms were moulded from polyvinyl alcohol (PVA) Cryogel and attached via stiff water-filled tubing to a gear pump. Pulsatile distension of the phantoms was effected by suitable programming of the pump. Cine MRI scanning was carried out at 7 T and compared with in vivo rodent cardiac imaging. Suitable pulsatile performance was achieved with phantoms for which the PVA material had been subjected to two freeze-thaw cycles, resulting in T1 and T2 relaxation time constants of 1656±124 ms and 55±10 ms, respectively. For the rat phantom operating at 240 beats per min (bpm), the dynamic range of the outer diameter was from 10.3 to 12.4 mm with the wall thickness varying between 1.9 and 1.2 mm. Corresponding figures for the mouse phantom at 480 bpm were outer diameter range from 5.4 to 6.4 mm and wall thickness from 1.5 to 1.2 mm. Dynamic cardiac phantoms simulating rodent left ventricular motion in the short-axis view were successfully developed and compared with in vivo imaging. The phantoms can be used for future development work with reduced need of live animals. © 2012 Elsevier Inc.

Original publication

DOI

10.1016/j.mri.2012.04.008

Type

Journal article

Journal

Magnetic Resonance Imaging

Publication Date

01/10/2012

Volume

30

Pages

1186 - 1191