Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Myocardial constitutive No production depends on the activity of both endothelial and neuronal NOS (eNOS and nNOS, respectively). Stimulation of myocardial β(3)-adrenergic receptor (β(3)-AR) produces a negative inotropic effect that is dependent on eNOS. We evaluated whether nNOS also plays a role in β(3)-AR signaling and found that the β(3)-AR-mediated reduction in cell shortening and [Ca(2+)](i) transient amplitude was abolished both in eNOS(-/-) and nNOS(-/-) left ventricular (LV) myocytes and in wild type LV myocytes after nNOS inhibition with S-methyl-L-thiocitrulline. LV superoxide (O(2)(·-)) production was increased in nNOS(-/-) mice and reduced by L-N(ω)-nitroarginine methyl ester (L-NAME), indicating uncoupling of eNOS activity. eNOS S-glutathionylation and Ser-1177 phosphorylation were significantly increased in nNOS(-/-) myocytes, whereas myocardial tetrahydrobiopterin, eNOS Thr-495 phosphorylation, and arginase activity did not differ between genotypes. Although inhibitors of xanthine oxidoreductase (XOR) or NOX2 NADPH oxidase caused a similar reduction in myocardial O(2)(·-), only XOR inhibition reduced eNOS S-glutathionylation and Ser-1177 phosphorylation and restored both eNOS coupled activity and the negative inotropic and [Ca(2+)](i) transient response to β(3)-AR stimulation in nNOS(-/-) mice. In summary, our data show that increased O(2)(·-) production by XOR selectively uncouples eNOS activity and abolishes the negative inotropic effect of β(3)-AR stimulation in nNOS(-/-) myocytes. These findings provide unequivocal evidence of a functional interaction between the myocardial constitutive NOS isoforms and indicate that aspects of the myocardial phenotype of nNOS(-/-) mice result from disruption of eNOS signaling.

Original publication

DOI

10.1074/jbc.M112.412031

Type

Journal article

Journal

J Biol Chem

Publication Date

21/12/2012

Volume

287

Pages

43665 - 43673

Keywords

Animals, Arginase, Calcium Signaling, Citrulline, Enzyme Inhibitors, Heart Ventricles, Isoenzymes, Membrane Glycoproteins, Mice, Mice, Knockout, Muscle Proteins, Myocardium, Myocytes, Cardiac, NADPH Oxidase 2, NADPH Oxidases, NG-Nitroarginine Methyl Ester, Nitric Oxide Synthase Type I, Nitric Oxide Synthase Type III, Phosphorylation, Receptors, Adrenergic, beta-3, Superoxides, Thiourea, Xanthine Dehydrogenase