Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIMS: Impaired energy metabolism has been implicated in the pathogenesis of heart failure. Hyperpolarized (13)C magnetic resonance (MR), in which (13)C-labelled metabolites are followed using MR imaging (MRI) or spectroscopy (MRS), has enabled non-invasive assessment of pyruvate metabolism. We investigated the hypothesis that if we serially examined a model of heart failure using non-invasive hyperpolarized [(13)C]pyruvate with MR, the profile of in vivo pyruvate oxidation would change throughout the course of the disease. METHODS AND RESULTS: Dilated cardiomyopathy (DCM) was induced in pigs (n = 5) by rapid pacing. Pigs were examined using MR at weekly time points: cine-MRI assessed cardiac structure and function; hyperpolarized [2-(13)C]pyruvate was administered intravenously, and (13)C MRS monitored [(13)C]glutamate production; (31)P MRS assessed cardiac energetics [phosphocreatine (PCr)/ATP]; and hyperpolarized [1-(13)C]pyruvate was administered for MRI of pyruvate dehydrogenase complex (PDC)-mediated pyruvate oxidation via [(13)C]bicarbonate production. Early in pacing, the cardiac index decreased by 25%, PCr/ATP decreased by 26%, and [(13)C]glutamate production decreased by 51%. After clinical features of DCM appeared, end-diastolic volume increased by 40% and [(13)C]bicarbonate production decreased by 67%. Pyruvate dehydrogenase kinase 4 protein increased by two-fold, and phosphorylated Akt decreased by half. Peroxisome proliferator-activated receptor-α and carnitine palmitoyltransferase-1 gene expression decreased by a half and a third, respectively. CONCLUSION: Despite early changes associated with cardiac energetics and (13)C incorporation into the Krebs cycle, pyruvate oxidation was maintained until DCM developed, when the heart's capacity to oxidize both pyruvate and fats was reduced. Hyperpolarized (13)C MR may be important to characterize metabolic changes that occur during heart failure progression.

Original publication




Journal article


Eur J Heart Fail

Publication Date





130 - 140


Adenosine Triphosphate, Animals, Bicarbonates, Carbon Isotopes, Cardiac Pacing, Artificial, Cardiac Volume, Cardiomyopathy, Dilated, Carnitine O-Palmitoyltransferase, Citric Acid Cycle, Disease Models, Animal, Energy Metabolism, Gene Expression, Glutamic Acid, Glycolysis, Heart Failure, Magnetic Resonance Imaging, Magnetic Resonance Spectroscopy, Membrane Transport Proteins, PPAR alpha, Phosphocreatine, Protein Kinases, Pyruvate Dehydrogenase Complex, Pyruvic Acid, Swine, Ventricular Dysfunction, Left