Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: Gain-of-function mutations within Scn5a, including the DeltaKPQ 1505-1507 deletion in the inactivation domain compromising myocardial repolarization, are implicated in human long QT 3 syndrome (LQT3), associated with ventricular arrhythmogenesis and sudden death. METHODS AND RESULTS: Patch clamp studies on isolated ventricular Scn5a+/Delta myocytes from DeltaKPQ mice produced by homologous recombination in embryonic stem (ES) cells confirmed such altered electrophysiological properties of the mutant channel. Programmed electrical stimulation (PES) with decremental pacing from the basal right ventricular epicardial surface and paced electrogram fractionation analysis (PEFA) of electrograms recorded from the basal left ventricular epicardial surface of Langendorff-perfused whole heart preparations demonstrated ventricular tachycardia (VT) in 8 of 9 Scn5a+/Delta mutant (but no Scn5a+/+ (wild-type (WT)) controls; n = 17), with increased electrogram durations (EGD) and more dispersed conduction curves. Isoproterenol (100 nM) was without effect on tachycardic Scn5a+/Delta hearts (n = 9) yet propranolol (1 microM) prevented VT in all isoproterenol-infused WT control (n = 4) but no Scn5a+/Delta hearts (n = 4). Furthermore propranolol itself increased EGD and dispersion in Scn5a+/Delta hearts. In contrast, mexiletine (10 microM) suppressed VTs in 4 of 5 Scn5a+/Delta hearts without altering EGD or dispersion. CONCLUSION: Beta-adrenoreceptor blockade does not confer an antiarrhythmic effect and may even enhance arrhythmogenesis by increasing reentrant substrate in Scn5a+/Delta hearts while mexiletine protects against VT without modifying conduction characteristics. Together these findings permit a scheme where VT in LQT3 is initiated by triggered mechanisms but propagated by reentry.

Original publication




Journal article


J Cardiovasc Electrophysiol

Publication Date





1329 - 1340


Action Potentials, Adrenergic beta-Antagonists, Animals, Anti-Arrhythmia Agents, Cardiac Pacing, Artificial, Disease Models, Animal, Electric Stimulation, Gene Deletion, Long QT Syndrome, Mexiletine, Mice, Mice, Transgenic, Muscle Cells, NAV1.5 Voltage-Gated Sodium Channel, Sodium Channels, Tachycardia, Ventricular