Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The ultimate step in the biosynthesis of the medicinally important beta-lactamase inhibitor clavulanic acid is catalyzed by clavulanic acid dehydrogenase (CAD). CAD is responsible for the NAPDH-dependent reduction of the unstable intermediate clavulanate-9-aldehyde to yield clavulanic acid. Here, we report biochemical and structural studies on CAD. Biophysical analyses demonstrate that CAD exists as dimeric and tetrameric species in solution. The reaction performed by CAD was shown to be reversible, allowing the use of clavulanic acid for activity analyses. The crystal structure of CAD was solved using single-wavelength anomalous diffraction with a seleno-methionine derivative. The structure reveals that the individual monomers comprise a single domain possessing the Rossmann fold, characteristic of dinucleotide-binding enzymes. The monomers are arranged as tetramers, similar to other tetrameric members of the short-chain dehydrogenase/reductase family. The structure of the unreactive complex of CAD with clavulanic acid and NADPH suggests how CAD is able to catalyze the reduction of clavulanate-9-aldehyde without fragmentation of the bicyclic beta-lactam ring structure. The relative positions of NADPH and clavulanic acid, in the active site, together with the presence of the latter in an eclipsed conformation, rationalizes previous labeling studies demonstrating that the incorporation of the C5 pro-R, but not pro-S, hydrogen of ornithine/arginine into the C9 position of clavulanic acid occurs with overall inversion of configuration.

Original publication

DOI

10.1021/bi061978x

Type

Journal article

Journal

Biochemistry

Publication Date

13/02/2007

Volume

46

Pages

1523 - 1533

Keywords

Alcohol Oxidoreductases, Binding Sites, Clavulanic Acid, Cloning, Molecular, Crystallization, Crystallography, X-Ray, Escherichia coli, Models, Molecular, Protein Structure, Quaternary, Spectrometry, Mass, Electrospray Ionization, Streptomyces