Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Plasma concentrations of 3-hydroxybutyrate (3HB) are measured more often than acetoacetate (AcAc) which may be due to the reported storage instability of AcAc. The aims of the study were to compare the storage stability of AcAc in different blood fractions over time (90days) when stored at -80°C and to determine the postprandial concentration of AcAc in whole blood, plasma and red blood cells. METHODS: Blood was collected from fasting subjects (n=5): whole blood, plasma and red blood cells were isolated and deproteinised in perchloric acid, and supernatants were stored at -80°C until analysis. Postprandial concentrations of AcAc in whole blood, plasma and red blood cells were determined at regular intervals over 420min, after subjects (n=23) had consumed a mixed test meal. RESULTS: Storing deproteinised plasma at -80°C resulted in no significant change in AcAc concentration over 60days. In contrast, whole blood AcAc concentrations significantly decreased by 51% (p=0.018) within 30days. The concentration of AcAc in fasting and postprandial plasma was notably higher than that of whole blood and red blood cells. DISCUSSION: Our data demonstrates that plasma for AcAc analysis can be stored for longer than previously suggested provided that plasma is deproteinised and stored at -80°C.

Original publication




Journal article


Clin Chim Acta

Publication Date





278 - 283


Acetoacetate, Blood fractions, Deproteinised, Storage stability, 3-Hydroxybutyric Acid, Acetoacetates, Blood Chemical Analysis, Cold Temperature, Erythrocytes, Fatty Acids, Nonesterified, Female, Humans, Insulin, Male, Middle Aged, Plasma, Postprandial Period, Specimen Handling, Time Factors