Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Living cardiac tissue slices, a pseudo two-dimensional (2D) preparation, have received less attention than isolated single cells, cell cultures, or Langendorff-perfused hearts in cardiac biophysics research. This is, in part, due to difficulties associated with sectioning cardiac tissue to obtain live slices. With moderate complexity, native cell-types, and well-preserved cell-cell electrical and mechanical interconnections, cardiac tissue slices have several advantages for studying cardiac electrophysiology. The trans-membrane potential (Vm) has, thus far, mainly been explored using multi-electrode arrays. Here, we combine tissue slices with optical mapping to monitor Vm and intracellular Ca(2+) concentration ([Ca(2+)]i). This combination opens up the possibility of studying the effects of experimental interventions upon action potential (AP) and calcium transient (CaT) dynamics in 2D, and with relatively high spatio-temporal resolution. As an intervention, we conducted proof-of-principle application of stretch. Mechanical stimulation of cardiac preparations is well-established for membrane patches, single cells and whole heart preparations. For cardiac tissue slices, it is possible to apply stretch perpendicular or parallel to the dominant orientation of cells, while keeping the preparation in a constant focal plane for fluorescent imaging of in-slice functional dynamics. Slice-to-slice comparison furthermore allows one to assess transmural differences in ventricular tissue responses to mechanical challenges. We developed and tested application of axial stretch to cardiac tissue slices, using a manually-controlled stretching device, and recorded Vm and [Ca(2+)]i by optical mapping before, during, and after application of stretch. Living cardiac tissue slices, exposed to axial stretch, show an initial shortening in both AP and CaT duration upon stretch application, followed in most cases by a gradual prolongation of AP and CaT duration during stretch maintained for up to 50 min. After release of sustained stretch, AP duration (APD) and CaT duration reverted to shorter values. Living cardiac tissue slices are a promising experimental model for the study of cardiac mechano-electric interactions. The methodology described here can be refined to achieve more accurate control over stretch amplitude and timing (e.g. using a computer-controlled motorised stage, or by synchronising electrical and mechanical events) and through monitoring of regional tissue deformation (e.g. by adding motion tracking).

Original publication

DOI

10.1016/j.pbiomolbio.2014.08.006

Type

Journal article

Journal

Prog Biophys Mol Biol

Publication Date

08/2014

Volume

115

Pages

314 - 327

Keywords

Axial stretch, Mechano-electric feedback, Multi-parametric, Optical mapping, Action Potentials, Animals, Calcium Signaling, Cells, Cultured, Excitation Contraction Coupling, Heart Conduction System, Mechanotransduction, Cellular, Organ Culture Techniques, Physical Stimulation, Rabbits, Stress, Mechanical