Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Microsatellites have been widely used as tools for population studies. However, inference about population processes relies on the specification of mutation parameters that are largely unknown and likely to differ across loci. Here, we use data on somatic mutations to investigate the mutation process at 14 tetranucleotide repeats and carry out an advanced multilocus analysis of different demographic scenarios on worldwide population samples. We use a method based on less restrictive assumptions about the mutation process, which is more powerful to detect departures from the null hypothesis of constant population size than other methods previously applied to similar data sets. We detect a signal of population expansion in all samples examined, except for one African sample. As part of this analysis, we identify an "anomalous" locus whose extreme pattern of variation cannot be explained by variability in mutation size. Exaggerated mutation rate is proposed as a possible cause for its unusual variation pattern. We evaluate the effect of using it to infer population histories and show that inferences about demographic histories are markedly affected by its inclusion. In fact, exclusion of the anomalous locus reduces interlocus variability of statistics summarizing population variation and strengthens the evidence in favor of demographic growth.

Type

Journal article

Journal

Genetics

Publication Date

04/2000

Volume

154

Pages

1793 - 1807

Keywords

Colorectal Neoplasms, Demography, Germ-Line Mutation, Humans, Microsatellite Repeats