Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2015, The Author(s). For the analysis of gene function in vivo, gene overexpression in the mouse provides an alternative to loss-of-function knock-out approaches and can help reveal phenotypes where compensatory mechanisms are at play. Furthermore, when multiple lines overexpressing a gene-of-interest at varying levels are studied, the consequences of differences in gene dosage can be explored. Despite these advantages, inherent shortcomings in the methodologies used for the generation of gain-of-function transgenic mouse models have limited their application to functional gene analysis, and the necessity for multiple lines comes at a significant animal and financial cost. The targeting of transgenic overexpression constructs at single copy into neutral genomic loci is the preferred method for the generation of such models, which avoids the unpredictable outcomes associated with conventional random integration. However, despite the increased reliability that targeted transgenic methodologies provide, only one expression level results, as defined by the promoter used. Here, we report a new versatile overexpression allele, the promoter-switch allele, which couples PhiC31 integrase-targeted transgenesis with Flp recombinase promoter switching and Cre recombinase activation. These recombination switches allow the conversion of different overexpression alleles, combining the advantages of transgenic targeting with tunable transgene expression. With this approach, phenotype severity can be correlated with transgene expression in a single mouse model, providing a cost-effective solution amenable to systematic gain-of-function studies.

Original publication




Journal article


Mammalian Genome

Publication Date





598 - 608