Dual stoichiometry and subunit organization in the ClpP1/P2 protease from the cyanobacterium Synechococcus elongatus.
Mikhailov VA., Ståhlberg F., Clarke AK., Robinson CV.
The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. To investigate the proteolytic core of the ClpXP1/P2 protease from the cyanobacterium Synechococcus elongatus we have used a non-denaturing mass spectrometry approach. We show that the proteolytic core is a double ring tetradecamer consisting of an equal number of ClpP1 and ClpP2 subunits with masses of 21.70 and 23.44 kDa, respectively. Two stoichiometries are revealed for the heptameric rings: 4ClpP1+3ClpP2 and 3ClpP1+4ClpP2. When combined in the double ring the stoichiometries are (4ClpP1+3ClpP2)+(3ClpP1+4ClpP2) and 2×(3ClpP1+4ClpP2) with a low population of a 2×(4ClpP1+3ClpP2) tetradecamer. The assignment of the stoichiometries is confirmed by collision-induced dissociation of selected charge states of the intact heptamer and tetradecamer. Presence of the heterodimers, heterotetramers and heterohexamers, and absence of the mono-oligomers, in the mass spectra of the partially denatured protease indicates that the ring complex consists of a chain of ClpP1/ClpP2 heterodimers with the ring completed by an additional ClpP1 or ClpP2 subunit.