Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have compared micelles, reverse micelles, and reverse micelles encapsulating myoglobin using electrospray mass spectrometry. To enable a direct comparison, the same surfactant (cetyltrimethylammonium bromide (CTAB)) was used in each case and micelle formation was controlled by manipulating the aqueous and organic phases. Tandem mass spectra of the resulting micelle preparations reveal differences in the ions that dissociate: those that dissociate from regular micelles have undergone >90% exchange of bromide ions from the headgroup with acetate ions from bulk solvent. By contrast, for reverse micelles, ions are detected without exchange of bromide ions from the headgroup, consistent with their protection in the core of the micellar structure. Tandem mass spectra of micelles and reverse micelles reveal polydispersed assemblies containing several hundred CTAB molecules, indicating the coalescence of the micellar systems to form large assemblies. For reverse micelles incorporating myoglobin, spectra are consistent with one holo myogolobin molecule in association with approximately 270 CTAB molecules. Overall, therefore, our results show that the solution-phase orientation of surfactants is preserved during electrospray and are consistent with interactions being maintained between surfactants and an encapsulated protein.

Original publication




Journal article


J Am Chem Soc

Publication Date





8740 - 8746


Capsules, Gases, Ions, Micelles, Models, Biological, Myoglobin, Proteins, Spectrometry, Mass, Electrospray Ionization, Surface-Active Agents