Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Protein interaction networks are becoming an increasingly important area of research within structural genomics. Here we present an ion mobility-mass spectrometry approach capable of distinguishing the overall subunit architecture of protein complexes. The approach relies on the simultaneous measurement in the gas phase of the mass and size of intact assemblies and subcomplexes. These data are then used as restraints to generate topological models of protein complexes. To test and develop our method, we have chosen two well-characterized homo-dodecameric protein complexes: ornithine carbamoyl transferase and glutamine synthetase. By forming subcomplexes related to the comparative strength of the subunit interfaces, acquiring ion mobility data, and subsequent modeling, we show that these "building blocks" retain their native interactions and do not undergo major rearrangement in either solution or gas phases. We apply this approach to study two subcomplexes of the human eukaryotic initiation factor 3, for which there is no high-resolution structure.

Original publication

DOI

10.1016/j.str.2009.07.013

Type

Journal article

Journal

Structure

Publication Date

09/09/2009

Volume

17

Pages

1235 - 1243

Keywords

Gases, Glutamate-Ammonia Ligase, Mass Spectrometry, Ornithine Carbamoyltransferase, Proteins