Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Under solution conditions where the native state is destabilized, the largely helical polypeptide hormone insulin readily aggregates to form amyloid fibrils with a characteristic cross-beta structure. However, there is a lack of information relating the 4.8 A beta-strand repeat to the higher order assembly of amyloid fibrils. We have used cryo-electron microscopy (EM), combining single particle analysis and helical reconstruction, to characterize these fibrils and to study the three-dimensional (3D) arrangement of their component protofilaments. Low-resolution 3D structures of fibrils containing 2, 4, and 6 protofilaments reveal a characteristic, compact shape of the insulin protofilament. Considerations of protofilament packing indicate that the cross-beta ribbon is composed of relatively flat beta-sheets rather than being the highly twisted, beta-coil structure previously suggested by analysis of globular protein folds. Comparison of the various fibril structures suggests that very small, local changes in beta-sheet twist are important in establishing the long-range coiling of the protofilaments into fibrils of diverse morphology.

Original publication

DOI

10.1073/pnas.142459399

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

09/07/2002

Volume

99

Pages

9196 - 9201

Keywords

Amyloid, Animals, Cattle, Cryoelectron Microscopy, Image Processing, Computer-Assisted, In Vitro Techniques, Insulin, Macromolecular Substances, Models, Molecular, Protein Structure, Secondary