Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Copyright 2015 by the authors. The goal of this paper is to estimate sparse linear regression models, where for a given partition G of input variables, the selected variables are chosen from a diverse set of groups in G. We consider a novel class of nonconvex constraint functions, and develop RepLasso, a greedy homotopy method that exploits geometrical properties of the constraint functions to build a sequence of suitably adapted convex surrogate problems. We prove that in some situations RepLasso recovers the global minima path of the noncon-vex problem. Moreover, even if it does not recover the global minima, we prove that it will often do no worse than the Lasso in terms of (signed) support recovery, while in practice outperforming it. We show empirically that the strategy can also be used to improve over various other Lasso-style algorithms. Finally, a GWAS of ankylosing spondylitis highlights our method's practical utility.


Conference paper

Publication Date





1051 - 1060