Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To test the hypothesis that extra virgin olive oils from different cultivars added to Western diets might behave differently than palm oil in the development of atherosclerosis, apoE-deficient mice were fed diets containing different cultivars of olive oil for 10 weeks. Female mice were assigned randomly to one of the following five groups: (1-4) fed chow diets supplemented with 0.15% (w/w) cholesterol and 20% (w/w) extra virgin olive oil from the Arbequina, Picual, Cornicabra, or Empeltre cultivars, and (5) fed a chow diet supplemented with 0.15% cholesterol and 20% palm oil. Compared to diets containing palm oil, a Western diet supplemented with one of several varieties of extra virgin olive oil decreased atherosclerosis lesions, reduced plaque size, and decreased macrophage recruitment. Unexpectedly, total plasma paraoxonase activity, apoA-I, plasma triglycerides, and cholesterol played minor roles in the regulation of differential aortic lesion development. Extra virgin olive oil induced a cholesterol-poor, apoA-IV-enriched lipoparticle that has enhanced arylesterase and antioxidant activities, which is closely associated with reductions in atherosclerotic lesions. Given the anti-atherogenic properties of extra virgin olive oil evident in animal models fed a Western diet, clinical trials are needed to establish whether these oils are a safe and effective means of treating atherosclerosis.

Original publication




Journal article



Publication Date





372 - 382


Animals, Aorta, Apolipoprotein A-I, Apolipoproteins A, Apolipoproteins E, Aryldialkylphosphatase, Atherosclerosis, Diet, Atherogenic, Disease Models, Animal, Female, Mice, Olive Oil, Palm Oil, Plant Oils