Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Biological membranes form barriers that are essential for cellular integrity and compartmentalisation. Proteins in the membrane have co-evolved with their hydrophobic lipid environment, which serves as a solvent for proteins with very diverse requirements. As a result, their interactions range from non-selective to highly discriminating. Mass spectrometry enables us to monitor how lipids interact with membrane proteins and assess their effects on structure and dynamics. Recent studies illustrate the ability to differentiate specific lipid binding, preferential interactions with lipid subsets, and nonselective annular contacts. Here, we consider the biological implications of different lipid-binding scenarios and propose that binding occurs on a sliding selectivity scale, in line with the view of biological membranes as facilitators of dynamic protein and lipid organization.

Type

Journal article

Journal

Current opinion in structural biology

Publication Date

04/05/2016

Volume

39

Pages

54 - 60

Addresses

Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3QZ, United Kingdom.