Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

How cAMP generates hormone-specific effects has been debated for many decades. Fluorescence resonance energy transfer (FRET)-based sensors for cAMP allow real-time imaging of the second messenger in intact cells with high spatiotemporal resolution. This technology has made it possible to directly demonstrate that cAMP signals are compartmentalised. The details of such signal compartmentalisation are still being uncovered, and recent findings reveal a previously unsuspected submicroscopic heterogeneity of intracellular cAMP. A model is emerging where specificity depends on compartmentalisation and where the physiologically relevant signals are those that occur within confined nanodomains, rather than bulk changes in cytosolic cAMP. These findings subvert the classical notion of cAMP signalling and provide a new framework for the development of targeted therapeutic approaches.

Original publication




Journal article


Trends in Pharmacological Sciences


Elsevier BV

Publication Date



Department of Molecular Pharmacology, University of Groningen, The Netherlands; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.