Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Reduced lung function is common and associated with increased cardiovascular morbidity and mortality, even in asymptomatic individuals without diagnosed respiratory disease. Previous studies have identified relationships between lung function and cardiovascular structure in individuals with pulmonary disease, but the relationships in those free from diagnosed cardiorespiratory disease have not been fully explored. METHODS: UK Biobank is a prospective cohort study of community participants in the United Kingdom. Individuals self-reported demographics and co-morbidities, and a subset underwent cardiovascular magnetic resonance (CMR) imaging and spirometry. CMR images were analysed to derive ventricular volumes and mass. The relationships between CMR-derived measures and spirometry and age were modelled with multivariable linear regression, taking account of the effects of possible confounders. RESULTS: Data were available for 4,975 individuals, and after exclusion of those with pre-existing cardiorespiratory disease and unacceptable spirometry, 1,406 were included in the analyses. In fully-adjusted multivariable linear models lower FEV1 and FVC were associated with smaller left ventricular end-diastolic (-5.21ml per standard deviation (SD) change in FEV1, -5.69ml per SD change in FVC), end-systolic (-2.34ml, -2.56ml) and stroke volumes (-2.85ml, -3.11ml); right ventricular end-diastolic (-5.62ml, -5.84ml), end-systolic (-2.47ml, -2.46ml) and stroke volumes (-3.13ml, -3.36ml); and with lower left ventricular mass (-2.29g, -2.46g). Changes of comparable magnitude and direction were observed per decade increase in age. CONCLUSIONS: This study shows that reduced FEV1 and FVC are associated with smaller ventricular volumes and reduced ventricular mass. The changes seen per standard deviation change in FEV1 and FVC are comparable to one decade of ageing.

Original publication




Journal article


PLoS One

Publication Date





Biological Specimen Banks, Female, Forced Expiratory Volume, Heart, Humans, Linear Models, Lung, Magnetic Resonance Imaging, Male, Middle Aged, Myocardium, Prospective Studies, Respiratory Function Tests, Spirometry, Stroke Volume, United Kingdom