Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Iron has been implicated in the pathogenesis of various disorders. Mutations in the HFE gene are associated with an increase in serum iron parameters. The aim of this study was to estimate the heritability in serum iron parameters explained by HFE. METHODS: Ninety families (980 subjects) were included in the present analysis. Heritability estimation was conducted using the variance component method. The likelihood ratio test was used to compare models. Phenotypic and genetic correlations between serum iron parameters were calculated. RESULTS: The heritability (h(2) +/- SE) estimates were 0.23 +/- 0.07 (p < 0.0001) for iron, 0.29 +/- 0.09 (p < 0.0001) for ferritin and 0.28 +/- 0.07 (p < 0.0001) for transferrin saturation while adjusting for age, age(2) and sex. The HFE genotypes explained between 2 to 6% of the sex and age-adjusted variance in serum iron, ferritin and transferrin saturation. There was a high genetic correlation between serum iron parameters, suggesting pleiotropy between these traits. CONCLUSION: A substantial proportion of the variance of iron, ferritin and transferrin saturation can be explained by additive genetic effects, independent of sex and age. The HFE genotypes explained a considerable proportion of serum iron parameters and may be an important factor in the complex iron network.

Original publication




Journal article


Hum Hered

Publication Date





222 - 228


Female, Ferritins, Genotype, Hemochromatosis Protein, Histocompatibility Antigens Class I, Humans, Iron, Male, Membrane Proteins, Middle Aged, Phenotype, Quantitative Trait, Heritable, Transferrin