Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Most studies on the genetic determinants of blood pressure and vascular complications of type 2 diabetes have focused on the effects of single genes. These studies often have yielded conflicting results. Therefore, we examined the combined effects of three renin-angiotensin system (RAS) genes and three salt sensitivity genes in relation to blood pressure and atherosclerosis in the total population and type 2 diabetic patients. The study was a part of the Rotterdam Study, a population-based cohort study. We have genotyped three RAS gene polymorphisms and three salt sensitivity gene polymorphisms. Diabetic patients with three risk genotypes of the RAS genes had a 6.9 mmHg higher systolic blood pressure (P for trend = 0.04) and a 6.0 mmHg higher pulse pressure (P for trend = 0.03) than those who did not carry any risk genotypes. Diabetic patients with three risk genotypes of the salt sensitivity genes had a 9.0 mmHg higher systolic blood pressure (P = 0.19) and a 13.1 mmHg higher pulse pressure (P = 0.02). Diabetic patients who carried three risk genotypes for the RAS genes had a higher mean intima-media thickness than those with two risk genotypes (mean difference 0.04 mm, P = 0.02). We found that among type 2 diabetic patients, mean systolic blood pressure, pulse pressure, and risk of hypertension increased with the number of risk genotypes for the RAS genes and the salt sensitivity genes.

Original publication

DOI

10.2337/db06-1127

Type

Journal article

Journal

Diabetes

Publication Date

07/2007

Volume

56

Pages

1905 - 1912

Keywords

Atherosclerosis, Blood Pressure, Diabetes Mellitus, Type 2, Female, Humans, Hypertension, Male, Middle Aged, Polymorphism, Genetic, Prospective Studies, Renin-Angiotensin System, Sodium Chloride, Dietary