Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2018, The Author(s). Atherosclerosis is a complex disease process. It is increasingly recognised that both lipoprotein retention and inflammatory cellular components are intricately related in the initiation and development of atherosclerotic plaque. LDL-c (cholesterol) has been long established as a cause for atherosclerosis; additionally, inflammatory cells such as monocytes and subsequently foam cells have also been directly linked to the progression of atherosclerotic disease. Emerging data suggest that structures outside vascular intima and media are also closely related to atherosclerosis. Perivascular adipose tissue (PVAT) may be a determinant of the inflammatory status of the atherosclerotic plaque. All these features are becoming extremely relevant as therapies against atherosclerosis are targeting both lipid retention and inflammation. Recently, there has been some success in these novel therapies, such as the proprotein convertase subtilisin-kexin type 9 (PCSK-9) inhibitor evolocumab and the interleukin-1ß neutralising antibody, canakinumab, in reducing cardiovascular events when added to standard therapy such as statin. This review will discuss the pathogenesis of atherosclerosis, including some novel features, and its management using new anti-atherosclerotic drugs.

Original publication




Journal article


Indian Journal of Thoracic and Cardiovascular Surgery

Publication Date





198 - 205