Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Serotonergic neurons play a major role in the modulation of emotion and behaviour. Especially knockout studies have revealed a role for the serotonin(1A) (5-HT(1A)) receptor in anxiety related behaviour. Mutant animals exhibit enhanced anxiety-like responses, possibly resulting from impaired autoinhibitory control of midbrain serotonergic neurons. To further elucidate the role of the 5-HT(1A) receptors in affective behaviour, a complementary approach has been used and transgenic mice overexpressing this receptor subtype have been generated. The expression of the active 5-HT(1A) receptor protein as indicated by autoradiography was transiently increased during early postnatal development (P1.5) as compared to wild-type mice. Within the next 2 weeks, the increase in receptor binding vanished and was also not apparent in adult animals indicating adaptive changes in the regulation of 5-HT(1A) receptor expression. Although no evidence for increased receptor binding in the brains of adult homozygous mice was found by autoradiography, typical phenotypic changes indicative of 5-HT(1A) receptor overactivity were apparent. Transgenic mice revealed a reduced molar ratio of 5-hydroxyindoleacetic acid to serotonin in several brain areas and elevated serotonin values in the hippocampus and striatum. Moreover, anxiety-like behaviour was decreased in male and female transgenic mice and body temperature was lowered in male transgenic mice in comparison with heterozygous and wild-type mice. These findings further underline the pivotal role of 5-HT(1A) receptors in the homeostasis of anxiety-like behaviour and the crucial importance of stimulation of the 5-HT(1A) receptor during the early postnatal development for normal anxiety-like behaviour throughout life.

Original publication

DOI

10.1016/j.molbrainres.2004.06.028

Type

Journal article

Journal

Brain Res Mol Brain Res

Publication Date

22/10/2004

Volume

129

Pages

104 - 116

Keywords

Animals, Anxiety, Behavior, Animal, Body Temperature, Brain Chemistry, Female, Hydroxyindoleacetic Acid, Male, Maze Learning, Mice, Mice, Transgenic, Neurons, Receptor, Serotonin, 5-HT1A, Serotonin