Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

Transforming growth factor β induced factor homeobox (TGIF) 1 and 2 are two transcriptional repressors. Although TGIF1 has been found to be involved in lipid metabolism, no studies have yet investigated the role of TGIF2 in hepatic lipid metabolism. Here we aim to investigate effects on hepatic lipid metabolism following overexpression of the human and mouse TGIF1 and TGIF2 protein. We used modified mRNA molecules to transiently enhance the expression of these proteins in human hepatoma cells. We found all the mRNA molecules to be translated, except the one for human TGIF1. Transient transfection with the mouse TGIF1 mRNA molecules lowered levels of cholesterol (p < 0.001), triglycerides (p < 0.001), and apolipoprotein B (p < 0.05) in the cell media by ~40%, along with the mRNA levels of some key genes involved in lipid metabolism. In contrast, limited effects on these parameters were observed following transient transfection with the human and mouse TGIF2 mRNA molecules. To enable investigation of the effects following enhanced expression of the human TGIF1 protein, we stably overexpressed this protein in human hepatoma cells. In line with the above findings, we found cells stably overexpressing the human TGIF1 protein had lower levels of cholesterol (p < 0.05), triglycerides (p < 0.05) and apolipoprotein B (p < 0.05) in the cell media by ~30%. Hence, transient and stable overexpression of the TGIF1 protein appears to lead to an advantageous lipid profile.

Original publication

DOI

10.1016/j.bbalip.2019.02.009

Type

Journal article

Journal

Biochim Biophys Acta Mol Cell Biol Lipids

Publication Date

05/2019

Volume

1864

Pages

756 - 762

Keywords

Apolipoprotein B, Cholesterol, Dyslipidemia, Triglycerides, mRNA molecules