Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

OBJECTIVE:To identify a plasma metabolomic biomarker signature for migraine. METHODS:Plasma samples from 8 Dutch cohorts (n = 10,153: 2,800 migraine patients and 7,353 controls) were profiled on a 1H-NMR-based metabolomics platform, to quantify 146 individual metabolites (e.g., lipids, fatty acids, and lipoproteins) and 79 metabolite ratios. Metabolite measures associated with migraine were obtained after single-metabolite logistic regression combined with a random-effects meta-analysis performed in a nonstratified and sex-stratified manner. Next, a global test analysis was performed to identify sets of related metabolites associated with migraine. The Holm procedure was applied to control the family-wise error rate at 5% in single-metabolite and global test analyses. RESULTS:Decreases in the level of apolipoprotein A1 (β -0.10; 95% confidence interval [CI] -0.16, -0.05; adjusted p = 0.029) and free cholesterol to total lipid ratio present in small high-density lipoprotein subspecies (HDL) (β -0.10; 95% CI -0.15, -0.05; adjusted p = 0.029) were associated with migraine status. In addition, only in male participants, a decreased level of omega-3 fatty acids (β -0.24; 95% CI -0.36, -0.12; adjusted p = 0.033) was associated with migraine. Global test analysis further supported that HDL traits (but not other lipoproteins) were associated with migraine status. CONCLUSIONS:Metabolic profiling of plasma yielded alterations in HDL metabolism in migraine patients and decreased omega-3 fatty acids only in male migraineurs.

Original publication

DOI

10.1212/wnl.0000000000007313

Type

Journal article

Journal

Neurology

Publication Date

03/04/2019

Volume

92

Pages

e1899 - e1911

Addresses

From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.

Keywords

BBMRI Metabolomics Consortium