Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Dr Sparrow has published a new paper in collaboration with the Victor Chang Cardiac Research Institute entitled "Gene-environment interaction impacts on heart development and embryo survival."

 

Congenital heart disease (CHD) is a heart defect that a baby is born with. It is the most common type of birth defect, affecting 1 in 100 babies worldwide, with about 12 affected babies born each day in the UK. Untreated, more than half of these will die. Such defects occur because something goes wrong as the baby’s heart forms in the womb. This can be because of faulty genes inherited from the parents, or it can be caused by environmental factors affecting the mother during pregnancy.

Most research in this area over the past 20 years has focused on understanding the genetic causes of CHD. However, even though the latest genome sequencing technologies have identified mutations in over 100 genes that can cause CHD, still only 20-30% of cases can be explained genetics alone.

Scientists at the Victor Chang Cardiac Research Institute in Sydney, Australia and DPAG's Duncan Sparrow have been studying how environmental factors might exacerbate the effects of genetic mutations to cause CHD. They have now shown that during normal pregnancy, mouse embryos lacking one copy of a gene associated with human CHD are completely normal, but when they are exposed to reduced oxygen levels in utero, their hearts form abnormally. This causes reduced heart rates and the sudden death of the embryos. They show that this is due to a normal cellular response to low oxygen levels acting pathologically to switch off the function of the remaining copy of the CHD-associated gene.

This work, partly funded by two British Heart Foundation grants, provides new evidence that some cases of CHD may be caused by the combination of genetic and environmental factors that each by itself does not cause a birth defect, but only do so when combined. This research may be applicable to prospective mothers with a family history of CHD, suggesting that it would be advisable for them to avoid known environmental risk factors for CHD.

Read the full paper published in Development here.

A summary is also available in the journal's "research highlights" section.

Similar stories

Oxford-led research maps milestone stage of human development for the first time

Scientists have shed light on an important stage of early embryonic development that has never been fully mapped out in humans before.

RDM researchers test potential treatment for fatigue in long COVID patients

The Radcliffe Department of Medicine’s Dr Betty Raman is leading a new a phase 2a clinical trial to investigate whether a drug could treat the fatigue and muscle weakness experienced by many patients who have recovered from COVID.

Drug could help diabetic hearts recover after a heart attack

New research led by Associate Professor Lisa Heather has found that a drug known as molidustat, currently in clinical trials for another condition, could reduce risk of heart failure after heart attacks.

Richard Tyser and Jack Miller honoured by the British Society of Cardiovascular Research

Dr Richard Tyser is this year’s winner of the Bernard and Joan Marshall Early Career Investigator Prize, and Dr Jack Miller has received a runner-up award, at the British Society of Cardiovascular Research Autumn Meeting.

Reducing fat in the diabetic heart could improve recovery from heart attack

New research from the Heather Group has shown that in type 2 diabetes an overload of lipids reduces the heart’s ability to generate energy during a heart attack, decreasing chances of recovery.