Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Aim Reduced left atrial PITX2 is associated with atrial cardiomyopathy and atrial fibrillation. PITX2 is restricted to left atrial cardiomyocytes in the adult heart. The links between PITX2 deficiency, atrial cardiomyopathy and atrial fibrillation are not fully understood. Methods and Results To identify mechanisms linking PITX2 deficiency to atrial fibrillation, we generated and characterized PITX2-deficient human atrial cardiomyocytes derived from human induced pluripotent stem cells (hiPSC) and their controls. PITX2-deficient hiPSC-derived atrial cardiomyocytes showed shorter and disorganised sarcomeres and increased mononucleation. Electron microscopy found an increased number of smaller mitochondria compared to the control. Mitochondrial protein expression was altered in PITX2-deficient hiPSC-derived atrial cardiomyocytes. Single-nuclear RNA-sequencing found differences in cellular respiration pathways and differentially expressed mitochondrial and ion channel genes in PITX2-deficient hiPSC-derived atrial cardiomyocytes. PITX2 repression in hiPSC-derived atrial cardiomyocytes replicated dysregulation of cellular respiration. Mitochondrial respiration was shifted to increased glycolysis in PITX2-deficient hiPSC-derived atrial cardiomyocytes. PITX2-deficient human hiPSC-derived atrial cardiomyocytes showed higher spontaneous beating rates. Action potential duration was more variable with an overall prolongation of early repolarization, consistent with metabolic defects. Gene expression analyses confirmed changes in mitochondrial genes in left atria from 42 patients with atrial fibrillation compared to 43 patients in sinus rhythm. Dysregulation of left atrial mitochondrial (COX7C) and metabolic (FOXO1) genes was associated with PITX2 expression in human left atria. Conclusions In summary, PITX2 deficiency causes mitochondrial dysfunction and a metabolic shift to glycolysis in human atrial cardiomyocytes. PITX2-dependent metabolic changes can contribute to the structural and functional defects found in PITX2-deficient atria.

Original publication

DOI

10.1093/cvr/cvae169

Type

Journal article

Journal

Cardiovascular Research

Publisher

Oxford University Press (OUP)

Publication Date

12/08/2024