Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The oligomeric state of human SAP (serum amyloid P component) in the absence and presence of known ligands has been investigated using nanoelectrospray ionization MS. At pH 8.0, in the absence of Ca2+, SAP has been shown to consist of pentameric and decameric forms. In the presence of physiological levels of Ca2+, SAP was observed to exist primarily as a pentamer, reflecting its in vivo state. dAMP was shown not only to promote decamerization, but also to lead to decamer stacking involving up to 30 monomers. A mechanism for this finding is proposed. CRP (C-reactive protein), a pentraxin closely related to SAP, exists as a pentamer in the presence or absence of Ca2+. Pentamers of CRP and SAP were shown to form mixed decamers in Ca2+-free buffer; however, in the presence of Ca2+, this interaction was not observed. Furthermore, no exchange of monomeric subunits was observed between the SAP and CRP oligomers, suggesting a remarkable stability of the individual pentameric complexes.

Original publication

DOI

10.1042/BJ20030541

Type

Journal article

Journal

Biochem J

Publication Date

15/10/2003

Volume

375

Pages

323 - 328

Keywords

C-Reactive Protein, Calcium, Dimerization, Humans, Ligands, Protein Binding, Serum Amyloid P-Component, Spectrometry, Mass, Electrospray Ionization