Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIMS: Empagliflozin (EMPA) is a potent inhibitor of the renal sodium-glucose cotransporter 2 (SGLT2) and an effective treatment for type-2 diabetes. In patients with diabetes and heart failure, EMPA has cardioprotective effects independent of improved glycaemic control, despite SGLT2 not being expressed in the heart. A number of non-canonical mechanisms have been proposed to explain these cardiac effects, most notably an inhibitory action on cardiac Na+/H+ exchanger 1 (NHE1), causing a reduction in intracellular [Na+] ([Na+]i). However, at resting intracellular pH (pHi), NHE1 activity is very low and its pharmacological inhibition is not expected to meaningfully alter steady-state [Na+]i. We re-evaluate this putative EMPA target by measuring cardiac NHE1 activity. METHODS AND RESULTS: The effect of EMPA on NHE1 activity was tested in isolated rat ventricular cardiomyocytes from measurements of pHi recovery following an ammonium pre-pulse manoeuvre, using cSNARF1 fluorescence imaging. Whereas 10 µM cariporide produced near-complete inhibition, there was no evidence for NHE1 inhibition with EMPA treatment (1, 3, 10 or 30 µM). Intracellular acidification by acetate-superfusion evoked NHE1 activity and raised [Na+]i, reported by sodium binding benzofuran isophthalate (SBFI) fluorescence, but EMPA did not ablate this rise. EMPA (10 µM) also had no significant effect on the rate of cytoplasmic [Na+]i-rise upon superfusion of Na+-depleted cells with Na+-containing buffers. In Langendorff-perfused mouse, rat and guinea pig hearts, EMPA did not affect [Na+]i at baseline nor pHi recovery following acute acidosis, as measured by 23Na triple quantum filtered NMR and 31P NMR, respectively. CONCLUSIONS: Our findings indicate that cardiac NHE1 activity is not inhibited by EMPA (or other SGLT2i's) and EMPA has no effect on [Na+]i over a wide range of concentrations, including the therapeutic dose. Thus, the beneficial effects of SGLT2i's in failing hearts should not be interpreted in terms of actions on myocardial NHE1 or intracellular [Na+]. TRANSLATIONAL PERSPECTIVE: Heart failure remains a huge clinical burden. Clinical trials of SGLT2 inhibitors in patients with diabetes and heart failure have reported highly significant cardiovascular benefit that appears independent of improved glycaemic control. As SGLT2 is not expressed in the heart, the mechanism by which SGLT2 inhibitors are cardioprotective remains unknown. Understanding this mechanism is clearly essential as the use of SGLT2 inhibitors in non-diabetics is increasing and a better understanding may allow refinement of therapeutic approaches in both HFpEF and HFrEF. One suggested mechanism that has received significant attention, inhibition of cardiac Na+/H+ exchanger, is investigated here.

Original publication

DOI

10.1093/cvr/cvaa323

Type

Journal article

Journal

Cardiovasc Res

Publication Date

02/11/2020