Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Use of targeted exome-arrays with common, rare variants and functionally enriched variation has led to discovery of new genes contributing to population variation in risk factors. Plasminogen activator-inhibitor 1 (PAI-1), tissue plasminogen activator (tPA), and the plasma product D-dimer are important components of the fibrinolytic system. There have been few large-scale genome-wide or exome-wide studies of PAI-1, tPA and D-dimer. OBJECTIVES: We sought to discover new genetic loci contributing to variation in these traits using an exome-array approach. METHODS: Cohort level analyses and fixed effects meta-analyses of PAI-1 (n = 15,603), tPA (n = 6,876) and D-dimer (n = 19,306) from 12 cohorts of European ancestry with diverse study design were conducted, including single-variant analyses and gene-based burden testing. RESULTS: Five variants located in NME7, FGL1 and the fibrinogen locus, all associated with D-dimer levels, achieved genome-wide significance (P < 5 × 10-8 ). Replication was sought for these 5 variants, as well as 45 well-imputed variants with P < 1 × 10-4 in the discovery using an independent cohort. Replication was observed for 3 out of the 5 significant associations, including a novel and uncommon (0.013 allele frequency) coding variant p.Trp256Leu in FGL1 (Fibrinogen-Like-1) with increased plasma D-dimer levels. Additionally, a candidate-gene approach revealed a suggestive association for a coding variant (rs143202684-C) in SERPINB2, and suggestive associations with consistent effect in the replication analysis include an intronic variant (rs11057830-A) in SCARB1 associated with increased D-dimer levels. CONCLUSION: This work provides new evidence for a role of FGL1 in hemostasis.

Original publication

DOI

10.1111/jth.15345

Type

Journal article

Journal

J Thromb Haemost

Publication Date

20/04/2021

Keywords

Computational Biology, Exome, Fibrinogen, Fibrinolysis, Genetic Association Study