Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Signalling activities are tightly regulated to control cellular responses. Heparan sulfate proteoglycans (HSPGs) at the cell membrane and extracellular matrix regulate ligand availability and interaction with a range of key receptors. SULF1 and SULF2 enzymes modify HSPG sulfation by removing 6-O sulfates to regulate cell signalling but are considered functionally identical. Our in vitro mRNA and protein analyses of two diverse human endothelial cell lines, however, highlight their markedly distinct regulatory roles of maintaining specific HSPG sulfation patterns through feedback regulation of HS 6-O transferase (HS6ST) activities and highly divergent roles in vascular endothelial growth factor (VEGF) and Transforming growth factor β (TGFβ) cell signalling activities. Unlike Sulf2, Sulf1 over-expression in dermal microvascular HMec1 cells promotes TGFβ and VEGF cell signalling by simultaneously upregulating HS6ST1 activity. In contrast, Sulf1 over-expression in venous ea926 cells has the opposite effect as it attenuates both TGFβ and VEGF signalling while Sulf2 over-expression maintains the control phenotype. Exposure of these cells to VEGF-A, TGFβ1, and their inhibitors further highlights their endothelial cell type-specific responses and integral growth factor interactions to regulate cell signalling and selective feedback regulation of HSPG sulfation that additionally exploits alternative Sulf2 RNA-splicing to regulate net VEGF-A and TGFβ cell signalling activities.

Original publication

DOI

10.3390/ijms23073769

Type

Journal article

Journal

International Journal of Molecular Sciences

Publisher

MDPI AG

Publication Date

29/03/2022

Volume

23

Pages

3769 - 3769