Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Mass spectrometry is now established as a powerful tool for the study of the stoichiometry, interactions, dynamics, and subunit architecture of large protein assemblies and their subcomplexes. Recent evidence has suggested that the 3D structure of protein complexes can be maintained intact in the gas phase, highlighting the potential of ion mobility to contribute to structural biology. A key challenge is to integrate the compositional and structural information from ion mobility mass spectrometry with molecular modelling approaches to produce 3D models of intact protein complexes. In this review, we focus on the mass spectrometry of protein-nucleic acid assemblies with particular attention to the application of ion mobility, an emerging technique in structural studies. We also discuss the challenges that lie ahead for the full integration of ion mobility mass spectrometry with structural biology.

Original publication

DOI

10.3109/10409238.2011.559451

Type

Journal article

Journal

Crit Rev Biochem Mol Biol

Publication Date

04/2011

Volume

46

Pages

152 - 164

Keywords

Animals, Binding Sites, Humans, Mass Spectrometry, Models, Molecular, Nucleic Acids, Proteins