Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Two-pore channels (TPCs) have been recently identified as NAADP-regulated Ca(2+) release channels, which are localized on the endolysosomal system. TPCs have a 12-transmembrane domain (TMD) structure and are evolutionary intermediates between the 24-TMD α-subunits of Na(+) or Ca(2+) channels and the transient receptor potential channel superfamily, which have six TMDs in a single subunit and form tetramers with 24 TMDs as active channels. Based on this relationship, it is predicted that TPCs dimerize to form functional channels, but the dimerization of human TPCs has so far not been studied. Using co-immunoprecipitation studies and a mass spectroscopic analysis of the immunocomplex, we show the presence of homo- and heteromeric complexes for human TPC1 and TPC2. Despite their largely distinct localization, we identified a discrete number of endosomes that coexpressed TPC1 and TPC2. Homo- and heteromerization were confirmed by a FRET study, showing that both proteins interacted in a rotational (N- to C-terminal/head-to-tail) symmetry. This is the first report describing the presence of homomultimeric TPC1 channels and the first study showing that TPCs are capable of forming heteromers.

Original publication

DOI

10.1074/jbc.C111.289835

Type

Journal article

Journal

J Biol Chem

Publication Date

28/10/2011

Volume

286

Pages

37058 - 37062

Keywords

Calcium, Calcium Channels, Endosomes, HEK293 Cells, Humans, NADP, Protein Multimerization, Protein Structure, Quaternary, Protein Structure, Tertiary