Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Different exposures, including diet, physical activity, or external conditions can contribute to genotype-environment interactions (G×E). Although high-dimensional environmental data are increasingly available and multiple exposures have been implicated with G×E at the same loci, multi-environment tests for G×E are not established. Here, we propose the structured linear mixed model (StructLMM), a computationally efficient method to identify and characterize loci that interact with one or more environments. After validating our model using simulations, we applied StructLMM to body mass index in the UK Biobank, where our model yields previously known and novel G×E signals. Finally, in an application to a large blood eQTL dataset, we demonstrate that StructLMM can be used to study interactions with hundreds of environmental variables.

Original publication

DOI

10.1038/s41588-018-0271-0

Type

Journal article

Journal

Nat Genet

Publication Date

01/2019

Volume

51

Pages

180 - 186

Keywords

Algorithms, Computer Simulation, Environment, Gene-Environment Interaction, Genotype, Humans, Linear Models, Models, Genetic, Quantitative Trait Loci