Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Decoding the pharmacological goldmine in tick saliva.

A new study led by Radcliffe Department of Medicine, Professor Shoumo Bhattacharya, has decoded the structure of unique proteins found in tick saliva and created new ones not found in nature, paving the way for a new generation of ‘Swiss-army knife’ anti-inflammatory drugs, with customised extensions to block different inflammatory pathways.  

Previous research by Professor Shoumo Bhattacharya underlines that tick saliva can be a pharmacological gold mine, potentially yielding many new drugs which could treat disorders ranging from cardiovascular diseases and stroke to arthritis. This previous work identified a group of tick saliva proteins called evasins, which bind to and neutralise chemokines, a group of chemicals key to causing inflammation in the body.

Now the researchers have worked out the structural trick that enables tick evasins to block a complex pathway that has multiple routes to the same response. What’s more, they can now manipulate this structure to make new, custom-made proteins based on tick evasins.

Read more (Radcliffe Department of Medicine website)

Similar stories

Joaquim Vieira recognised in national image competition

DPAG BHF Intermediate Research Fellow Dr Joaquim Vieira has been shortlisted for the British Heart Foundation’s annual ‘Reflections of Research’ image competition.

Study develops radiotranscriptomic AI analysis to enable virtual heart biopsies

RDM researchers tested the method in COVID-19 patients, to find that the results predicted in-hospital mortality.

BHF Senior Fellowship renewal for Duncan Sparrow could pave the way to revealing unknown causes of heart defects in babies

Congratulations are in order for Associate Professor Duncan Sparrow, who has been awarded a renewal of his British Heart Foundation Senior Basic Science Research Fellowship. The award will fund crucial investigations into little understood environmental risk factors of congenital heart disease, and could one day lead to new therapeutic strategies.

The effect of nuclear pH on cardiac gene expression

Research led by Dr Alzbeta Hulikova and Professor Pawel Swietach has, for the first time, described the potential regulation of nuclear acid-base chemistry in neonatal and adult cardiomyocytes, and explained its relevance in the context of heart physiology and pathology.

Study indicates reasons for decline in death rates from heart attacks

A new study involving Oxford Population Health researchers finds that both prevention and improved treatments have helped reduce deaths from heart attacks - but the relative importance of each varies by country, age and sex.