Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Findings explain higher risk of heart attack in people with diabetes, even after treatment .

Jars of sweets, with red, heart-shaped candies in the foreground

High levels of glucose in the blood ‘reprogrammes’ stem cells, leading to a lasting increase in the risk of developing dangerous atherosclerosis, according to research led by Professor Robin Choudhury

Radcliffe Department of Medicine researchers found that high blood glucose, a hallmark of diabetes, alters stem cells in the bone marrow that go on to become white blood cells called macrophages. As a result, these macrophages become inflammatory and contribute to the development of atherosclerotic plaques that can cause heart attacks.

This finding explains why people with diabetes are at increased risk of heart attack, even after their blood glucose levels are brought back under control, a paradox that has troubled doctors for years.

Nearly five million people in the UK have diabetes1, and adults with the condition have double the risk of having a heart attack.2. These findings open new possibilities for treatments that could reduce the risk of heart and circulatory disease in people with diabetes.

The team investigated the differences in white blood cells in people with and without type 2 diabetes. They removed the white blood cells from blood samples and grew them in an environment with normal glucose levels. Those from people with type 2 diabetes showed a greatly exaggerated inflammatory response compared to the cells from people without the condition.

Researchers also extracted stem cells from the bone marrow of mice with and without diabetes and transplanted these into mice with normal blood glucose levels. The bone marrow taken from diabetic mice ‘remembered’ its exposure to high levels of glucose and as a result the mice receiving this bone marrow developed almost double the amount of atherosclerotic plaques.

When the team looked at the mouse macrophages in more detail they found that those that had developed from stem cells in the bone marrow of diabetic mice had been permanently altered to become more inflammatory.

The team now want to explore new avenues for treatments based on this finding. They also want to find out whether short periods of increased blood glucose in people without diabetes have this damaging effect.

Professor Robin Choudhury, Professor of Cardiovascular Medicine at the Radcliffe Department of Medicine, University of Oxford, led the research. He said “Our study is the first to show that diabetes causes long-term changes to the immune system, and how this might account for the sustained increase in the risk of heart attack.

We need to change the way we think about, and treat, diabetes. By focussing too narrowly on a managing a person’s blood sugar levels we’re only addressing part of the problem.
- Professor Robin Choudhury

“Right now, people with diabetes aren’t receiving effective treatment for their increased risk of heart and circulatory disease. These findings identify new opportunities for preventing and treating the complications of diabetes.”
Professor Sir Nilesh Samani, Medical Director at the British Heart Foundation, which funded the research, said:
“While treatments for diabetes have improved, people with diabetes still have a higher risk of heart attacks. This research may provide part of the explanation for why this is the case and potentially pave the way for new treatments to reduce the risk of heart attack for the millions of people living with diabetes.”

This research was also funded by the Tripartite Immunometabolism Consortium (TrIC) – Novo Nordisk Foundation.

Read the full paper

Text courtesy of BHF. 

Similar stories

Drug could help diabetic hearts recover after a heart attack

New research led by Associate Professor Lisa Heather has found that a drug known as molidustat, currently in clinical trials for another condition, could reduce risk of heart failure after heart attacks.

Richard Tyser and Jack Miller honoured by the British Society of Cardiovascular Research

Dr Richard Tyser is this year’s winner of the Bernard and Joan Marshall Early Career Investigator Prize, and Dr Jack Miller has received a runner-up award, at the British Society of Cardiovascular Research Autumn Meeting.

Reducing fat in the diabetic heart could improve recovery from heart attack

New research from the Heather Group has shown that in type 2 diabetes an overload of lipids reduces the heart’s ability to generate energy during a heart attack, decreasing chances of recovery.

Critical six-week window to ‘reset’ blood pressure after giving birth

Home blood pressure monitors could help mothers significantly lower high blood pressure after pregnancy

Iron deficiency anaemia in early pregnancy increases risk of heart defects, suggests new research

In animal models, iron deficient mothers have a greatly increased risk of having offspring with congenital heart disease (CHD). The risk of CHD can be greatly reduced if the mother is given iron supplements very early in pregnancy. Additionally, embryos from a mouse model of Down Syndrome were particularly vulnerable to the effects of maternal iron deficiency, leading to a higher risk of developing severe heart defects.